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ABSTRACT N RÉSUMÉ

Retinal degeneration encompasses a constellation of common pathologies forwhich there is no regenerative treatment.
Vision loss has a devastating impact on quality of life and activities of daily living. Pharmacologic treatments serve to stave
off disease progression but do not represent a restorative approach. Cellular transplantation is considered to be a
promising approach for future therapy for retinal degeneration. There are, however, significant barriers that must be
overcome if cell transplantation is to become a clinical reality. In this review, we focus on the need for a cellular
replacement therapy for retinal disease and the promise of stem cells as candidate cellular therapeutics. In particular,
we discuss the origins of stem cells in the retina, the discovery and characterization of retinal stem cells isolated from
adult humans, and their transplantation potential and clinical implications.

La dégénérescence de la rétine comporte une constellation de pathologies communes pour lesquelles il n’y a pas de
traitement régénérateur. La perte de la vision a un effet dévastateur sur la qualité de vie et les activités quotidiennes. Les
traitements pharmacologiques servent à prévenir la progression de la maladie mais ne présentent pas une approche
restauratrice. La greffe cellulaire est considérée comme étant une approche prometteuse de thérapie éventuelle pour la
dégénérescence de la rétine. Il y a cependant d’importantes barrières à franchir pour qu’elle devienne une réalité
clinique. Dans cette revue, nous nous concentrons sur le besoin d’une thérapie de remplacement cellulaire pour la
maladie de la rétine et la promesse des cellules souches comme candidates à la thérapie cellulaire. Nous discutons
particulièrement des origines des cellules souches dans la rétine, de la découverte et la caractérisation des cellules
souches de la rétine isolées des humains adultes et des possibilités et implications cliniques de leur greffe.

THE CLINICAL IMPETUS FOR RETINAL CELLULAR

REPLACEMENT THERAPY

Diseases of the retina lead to permanent loss of visual
function for which there is no definitive treatment.

Retinal degenerative diseases affect the entire age spectrum.
Age-related macular degeneration (AMD) is the leading
cause of irreversible blindness and moderate visual impair-
ment in developed nations: it affects more than 2 million
Canadians over the age of 50 years.1Diabetic retinopathy is
the principal cause of blindness in middle-aged working
adults.2 Retinitis pigmentosa (RP) affects predominantly
the pediatric and young adult population, and is the lead-
ing cause of blindness associated with inherited retinal
degeneration.3 What all of these pathologies have in com-
mon is irreversible photoreceptor death or loss of function.
Driving forward the search for cures is the fact that as our
population ages in the coming decades, it is expected that
the rates of blindness due to retinal degenerationwill rise.4,5

Current therapies for retinal diseases have focused on
pharmacological treatments. For example, there have been
recent advances in the treatment of the neovascular (wet)
form of AMD with antivascular endothelial growth factor

therapies.6,7 Experimental treatments of diabetic retino-
pathy focus on bioactive molecules such as inhibitors of
advanced glycoslyation end products and antioxidants.8

These therapies show promise in limiting the pathophy-
siologic advancement of the disease; they do not represent a
restorative approach to vision loss. Cellular transplantation
is an alternative strategy. The inner retinal microarchitec-
ture in both AMD and RP is relatively intact after photo-
receptor degeneration, and 1 approach would be to
repopulate the missing photoreceptor cells. Various types
of tissue have been allografted in the treatment of retinal
disease: fetal retinal pigmented epithelium (RPE) cells in
patients with AMD9,10 and neural retinal cells in patients
with RP.11 While graft survival is observed, the improve-
ment in visual acuity has been disappointing.12

Recent studies suggest that stem cell transplantation
shows promise for reconstituting damaged cell populations
in the retina.13,14 Stem cells are the most versatile cells in
a living organism. They are defined by their self-renewal
and multipotentiality: their ability to generate specialized
progeny of various cell lineages. As a cell source for future
cell replacement therapy, stem cells are among the most
promising for the treatment of injured, diseased, or aging
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tissues. Embryonic stem cells, adult stem cells, and induced
pluripotent stem cells are the 3main classes of stem cell and
are derived from different sources. All have their own
advantages and hurdles that must be cleared before they
can be utilized for therapy.15 In this review, wewill consider
the various types of potential stem cell sources before turn-
ing our attention to the history of stem cells in the retina.
Wewill cover the discovery of the adult mammalian retinal
stem cell, its characterization, transplantation potential,
and possible future clinical application.

STEM CELLS: WHAT THEY ARE AND WHERE THEY

COME FROM

Embryonic stem cells are pluripotent cells isolated from
the inner cell mass of preimplantation blastocysts. They
can give rise to differentiated cell types of all 3 germ layers
of the organism and rapidly expand in culture. However,
they are inefficient at differentiation along a particular
lineage, and safety is an important concern in their clinical
application. Their proliferative ability may lead to tumour
and mass formation.16 Predifferentiation of these cells is 1
means to diminish the implied risk of transplanting a
pluripotent population directly.17 However, in the absence
of directed differentiation and ameans by which to purify a
cell population, impure populations of differentiated cells
can arise.18

Induced pluripotent stem cells, which have all of the
properties of bona fide embryonic stem cells, can be gen-
erated by introducing 4 genes (Oct4, Sox2, Klf4, c-Myc)
into somatic cells. These somatic cell types include adult fi-
broblasts, among other tissues such as liver and stomach.19–21

Recently, programming with as few as 222 or 123 of these
factors has been reported. Transgene-free methods of in-
duced pluripotent stem cell generation are also being
explored.24,25 Induced pluripotent stem cells benefit from
being immune compatible as a result of their derivation
from adult somatic cells of the same patient, and they
overcome the ethical issues faced by the use of embryonic
stem cells. However, the absence of a method to direct
these cells into a single lineage reproducibly and to avoid
the risk of tumour formation has restricted their use in
humans.26,27 Also, the current methods of somatic cell
reprogramming are still slow and inefficient.26 Investiga-
tors have developed protocols for the generation of retinal
cell types, such as photoreceptors, from human embryonic
stem cells28–31 and induced pluripotent stem cells.32 How-
ever, without going through a definitive retinal stem cell
type, these methods cannot be certain to exclude nonret-
inal cell types.
While multipotent adult stem cells lack the potency to

generate any cell type in the body, they are not considered
tumourigenic. They are also primed for the generation of
progeny that differentiate into the specific cell types of the
tissues in which they are resident and with high efficiency.
Amplification of populations of adult stem cells using in vitro

culture to yield clinically useful numbers is the major chal-
lenge, which will require an understanding of the biology
governing the maintenance of the stem cell niche in vivo.33,34

HISTORY OF THE STEM CELLS IN THE EYE: EVIDENCE FOR

MULTIPOTENTIAL STEM CELLS AND PROGENITORS IN THE

VERTEBRATE RETINA

The interest in stem cells and their role in the retina during
development and adult life spans just over 2 decades of
research. The experiments leading to the discovery of the adult
mammalian retinal stem cell began with investigations of
retinal development from multipotential retinal progenitors.
In the late-1980s, using retrovirus-mediated gene transfer

and lineage marking, it was discovered that a common
progenitor exists in the developing mammalian retina for
neurons and glia.35 Similar multipotent retinal progenitor
cells (RPCs) can give rise to all of the major cell types of the
adult nonmammalian vertebrate (xenopus) retina.36,37 To-
gether, these early studies showed that RPCs can give rise
to heterogeneous clones, but it was still unclear whether
multipotency was a common feature of all retinal progeni-
tors or whether this potency became more restricted with
developmental age.
In the mid 1990s, the differentiation capacity of these

RPCs was better understood. A model was developed in
which progenitors undergo a series of state changes defined
by the competence to respond to environmental cues to

Fig. 1—Sagittal section of the ciliary margin of the adult human eye (A).
The boxed area is magnified on the right. The ciliary margin is made up

of pigmented cells (dark inner line) overlying the smoothmuscle of the
ciliary body (grey) facing the lens. A clonally derived sphere of cells

derived from the pigmented ciliary margin (B). All cells in the sphere
are pigmented and derived from a single pigmented cell. After 7 days,

cells proliferate to form large colonies (100 mm+) containing pigmen-
ted and nonpigmented cells (C). Reprinted with permission.60
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produce 1 or a few particular cell types.38 Progenitors lose
competence for cell types produced earlier in development,
as suggested by experiments carried out in vitro39,40 and by
transplantation of RPCs between developmental stages in
vivo.38,41,42 Recently, isolation and experimental trans-
plantation of RPCs into murine and porcine retina have
been described.43,44 The integrated cells express markers
of mature photoreceptors, such as rhodopsin. However,
RPC cells must be isolated from the neural retina of the
developing eye, and this again raises ethical issues sur-
rounding the transplantation of fetal tissue.
Concurrently, the adult regenerative potential of the verte-

brate retina was being evaluated in various animal models.
In cold-blooded vertebrates (e.g., teleosts/zebrafish) the retina

continues to grow throughout life and in response to injury
in the adult. This occurs by the addition of new neurons at
the rim of the retina from a germinal zone at the ciliary
margin.45 Müller glial cells can dedifferentiate in response
to injury and produce neuronal progenitors in fish.46 Also,
transdifferentiation of the RPE into neural retina has been
demonstrated in a number of amphibians, as well as in
embryonic chick and rat.47–50 A proliferating marginal
zone of retinal progenitors in postnatal chickens had
been identified containing cells that share similarities with
RPCs and the proliferative cells of the cold-blooded verte-
brate retinal margin.51 However, it had been generally
assumed that the adult mammalian eye was devoid of
retinal stem cells.52–59

Fig. 2—Multipotency of retinal stem cells is demonstrated by culture on laminin-coated plates and exposure to differentiation conditions (1%

fetal bovine serum + basic fibroblast growth factor). Nuclei are stained blue with Hoechst in B, C, and E–G. The differentiated progeny include
RPE cells (RPE65+) (A), undifferentiated cells (nestin+) (B), retinal progenitors (nuclear)/amacrine (cytoplasmic) (Pax6+) (C), photoreceptors
(Rho4D2+) (D), retinal ganglion cells (neurofilament-M+) (E), horizontal cells (calbindin+) (F), photoreceptor cells (Rom1+) (G), bipolar cells
(Chx10+) (H), neuronal markers (syntaxin+, MAP2+, calbindin+) (I–K), and glial lineage (vimentin+) (L). Scale bars: 20 mm. Reprinted with

permission.61 (RPE, retinal pigmented epithelium.)
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DISCOVERY OF THE ADULT MAMMALIAN RETINAL

STEM CELL

In 2000, Tropepe and colleagues60 reported the isolation
of a stem cell in the adult mouse eye that represented a
promising cell type for retinal regeneration. These adult
retinal stem cells (RSCs) are localized in the pigmented
ciliary margin and not in the central or peripheral RPE
(Fig. 1). This indicated that the cells might be homologous
to the germinal zone of lower vertebrates. The analogy has
been made between the pigmented epithelium of the ciliary
body and the ciliary marginal zone of lower vertebrates, in
which the adult germinal zone lies. While the ciliary mar-
ginal zone is an undifferentiated neuroepithelium,37 the pig-
mented epithelium of the ciliary body is a mature,
differentiated epithelial monolayer. It is physically distinct
from the retina and lies anterior to the ora serrata. In culture,
RSCs proliferate to form clonal spheres of stem cells and
progenitors. The ability for self-renewal was demonstrated
through the production of multiple secondary spheres from
the passaging of a single sphere.60 Most excitingly, these
progeny are multipotential and can differentiate into all cell
types of the retina, including photoreceptors, bipolar cells,
RPE cells, and Müller glia. This ability sparked interest in
their potential for the treatment of human retinal diseases.
Four years later, the isolation of human RSCs was

reported,61 from donor eyes ranging in age from the early
postnatal period to the seventh decade. These adult stem
cells were also characterized in terms of their self-renewal
and multipotency (Fig. 2). To assess their potential as a
cellular therapeutic, the undifferentiated RSC progeny
were transplanted into postnatal day 1 mice. In mice,
photoreceptor genesis peaks at postnatal day 1.38,62 These
cells were able to survive, migrate, integrate, and differenti-
ate into the neural retina. In particular, a large proportion
of them integrated into the outer nuclear layer and took up
a photoreceptor phenotype (Fig. 3). Transplantation of
humanRSCs into embryonic chick eyes demonstrated that
RSC progeny could also respond to developmental cues to
form ganglion and horizontal cells—cell types that form
earlier in retinogenesis.38

Since this time, significant emphasis has been placed on
understanding the basic stem cell biology of adult RSCs, in
particular understanding their position in the retinal lin-
eage. A better understanding of the factors that maintain
RSCmultipotency and self-renewal could open the door to
enhancing the efficiency of their derivation and (or) dif-
ferentiation. For example, it has been shown that RSCs are
enriched for Pax6, a master control gene for establishment
of the retinal field from forebrain neuroectoderm. This
transcription factor is essential for the proliferation and
expansion of RSCs in vitro.63 The undifferentiated RSC
progeny also express markers of undifferentiated retinal
cells such as Chx1060,61,64 and the neural stem/progenitor
marker Nestin.60,61 Multipotent cells have been reported
in the adult mammalian iris pigmented epithelium.61,65

However, in humans only the posterior iris contains
colony-forming cells that proliferate to form primary
spheres, which cannot be passaged to secondary spheres.61

This suggests that sphere-forming cells derived from the
posterior iris may represent a progenitor population with
some limited proliferative ability. Developmentally, the
posterior iris arises from a neuroectoderm similar to that of
the ciliary body and retina, whereas the anterior iris is
derived from the neural crest.66 This may explain the isola-
tion of a retinal progenitor population from the posterior
iris only.

Fig. 3—Transplantation of RSC progeny into postnatal day 1 NOD/
SCID mouse eye. Green fluorescent protein (eGFP+) human RSCs

and progeny integrate into the neural retina and RPE (A). Scale bar:
250 mm. Inset: the human RSC sphere (250 mm diameter) derived from

an eGFP labeled RSC in phase-contrast and under green fluorescence.
eGFP+ RSC progeny can produce photoreceptors that integrate into

the outer nuclear layer of the neural retina (Rom1+ outer segments
stained red appear yellow as a result of colocalization with eGFP) (B).

Arrowheads indicate eGFP RSC progeny integrated into the RPE.
Scale bar: 50 mm. Transplanted human RSCs can integrate into the

RPE layer (bestrophin+ cells) (C). Reprinted with permission.61 (RSC,
retinal stem cell; NOD/SCID, nonobese diabetic/severe combined

immunodeficiency; RPE, retinal pigmented epithelium; INL, inner nuc-
lear layer; ONL, outer nuclear layer; PRL, photoreceptor layer.)
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Recently, it has been proposed that the RSC population
does not constitute a true stem cell population. Rather,
the observed multipotency is claimed to be the result of
transdifferentiation of a differentiated pigmented ciliary
epithelial cell by induction of stem/progenitor markers in
response to growth factors in the culture media.67 This
group’s arguments against stemness include the following:
(i) the cells isolated from the ciliary epithelium include all
of the pigmented cells here and (ii) poor retinal differenti-
ation has been observed, with unconvincing photoreceptor
differentiation in particular.67 However, there is strong
evidence against these propositions to suggest that the
RSC population represents, in fact, true stem cells and
can give rise to multiple retinal lineages. The original
reports of the RSC population specifically reference that
the proliferative and multipotent cell derived from the

ciliary epithelium is pigmented,60,64 and the specific rare
population of RSCs from the ciliarymargin have high Pax6
expression.63 Rare stem cells can be prospectively isolated
on this basis. Transdifferentiation implies differentiation
of a single cell without proliferative divisions, which is not
the case with RSCs derived from ciliary epithelium. Fur-
thermore, the multipotency of the RSC and its ability to
differentiate into various retinal cell types, including photo-
receptors, have been corroborated by a number of inde-
pendent reports.60,61,64,68–71

TRANSPLANTATION POTENTIAL OF RSCs: THE CLINICAL

FRONTIER

Research is progressing to understand the factors main-
taining the stem cell niche in vivo. However, it is unlikely

Fig. 4—Transduction of Otx289 and Crx90 combined with reversal of Chx1091–93 to an activating form, using Chx10VP16, produces the most

potent induction of photoreceptor differentiation from human RSCs. Self-inactivating lentiviral vector CSEIE containing internal ribosomal
entry site (IRES) sequences followed by enhanced green fluorescent protein (eGFP) (A). Constructs for the expression of Otx2, Crx, and

Chx10VP16 were cloned into this vector, which directs the expression of the cloned genes together with eGFP from the internal promoter
(EF1a) to be tested for their photoreceptor induction potential. The 3 tested transfections included the combinations Otx2/Crx, Chx10VP16/

Otx2, and Chx10VP16/Otx2/Crx10. Photoreceptor differentiation was significantly promoted by coexpression of these 3 constructs com-
pared with controls for rods (B) and cones (C) (ANOVA and Dunnett’s multiple comparison test, *p , 0.05). Rho1D4+ rods (D) or human

cone arrestin+ cells (E) coexpress GFP from the control (left panel) or Chx10VP16/Otx2/Crx-expression vector (right panel) as illustrated by
yellow fluorescent overlap. Many more rods and cones were formed during differentiation using Chx10VP16/Otx2/Crx-transduction than

control transduction (eGFP+ cells). Reprinted with permission.68 (RSC, retinal stem cells; ANOVA, analysis of variance.)
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that therapeutics aimed at stimulation of the proliferation
and differentiation of endogenous RSCs will be successful.
Migration of RSC progeny from the ciliary margin to the
central fovea, the primary site of photoreceptor degeneration
in diseases such as AMD, would need to occur over a signifi-
cant distance. It is also unclear what signals, if any, could be
used to enhance this migratory process. At present, a trans-
plantation model of therapy would appear to be the most
clinically relevant. For RSCs to have therapeutic potential
their ability to integrate and restore vision in animal models
of retinal disease is essential. Experiments involving the
transplantation of RSCs into retinas devoid of photoreceptors
or into partially degenerated retinas have shown that the adult
retina, whether partially degenerated or already degenerated,
cannot itself provide the signals to induce differentiation of
RSCs into photoreceptors.72 There are a number of potential
explanations, including insufficient contact between graft and
host cells as a result of poor integration of RSCs into the outer
nuclear layer, observed in subretinal transplantation.72–74

These findings suggest that a promising approach could be
to push differentiating RSCs, before transplantation, towards
a neuronal lineage. Reports of enhanced integration potential
of progenitors primed to becomemature photoreceptors sup-
port this hypothesis.75

A major limitation in using the progeny of RSCs
to replace photoreceptors is that these cells are only a
minority of differentiated RSCs in vitro. To address this
problem, the expression of 3 genes known to influence
photoreceptor development were manipulated using a
lentiviral-mediated gene delivery system (Fig. 4A).68

The efficiency of photoreceptor induction was greatly
increased, as demonstrated with in vitro differentiation
and transplantation into adult mouse eyes (Fig. 4B–E).
Furthermore, human RSC progeny transfected with the
3 genes could adopt photoreceptor fates more efficiently
after transplantation into postnatal day 1 mice, and con-
tributed to functional recovery when transplanted into
transducin-mutant mice.76 In transducin-mutant mice, rod
photoreceptors are present but do not function. Functional
recovery was demonstrated with electrophysiological (elec-
troretinography, ERG) and behavioural assays 3 months
after transplantation (Fig. 5). At high flash intensities,
ERG b-wave (bipolar) responses, reflecting cone photore-
ceptor activation, were not different between control and
transfected groups. However, under low-intensity light, the
ERG b-wave responses repeated measurements demon-
strated that cells treated with the 3 genes show a higher
response, corresponding to the integrated cells observed by
histology. B-wave responses should be the best reflection of
integrated donor human photoreceptors that have made
functional connections to host bipolar cells.77 In a virtual
optomotor task78 all transplanted eyes showed better spatial
frequency resolution than nontransplanted eyes, and trans-
fected cells showed better spatial vision than control trans-
planted eyes (Fig. 5). These results are strong evidence in
support of the potential of adult RSCs to provide functional
recovery after transplantation.
As a transplant model, the developing mouse host eye

provides a permissive environment for donor cells integrate
and respond to endogenous cues directing retinogenesis.

Fig. 5—Function of transplanted human RSC progeny in vivo. At the lowest flash intensities (left panel), the transducin-mutant group receiving
Chx10VP16/Otx2/Crx-transfected human RSCs shows a higher response than the nontransplanted or eGFP-only vector treated groups

(ANOVA and Dunnett’s multiple comparison test, *p , 0.05). Inset shows a significant correlation in maximal b-wave response and surviving
human photoreceptor cell numbers counted in survival/integration studies. The differences in spatial frequency data (right panel) were

estimated and represent intra-animal controls between the transplanted (right eye) and nontransplanted (left eye) in each individual mouse.
Chx10VP16/Otx2/Crx-treated cells showed better spatial vision than control transplanted eyes. Reprinted with permission.68 (RSC, retinal

stem cells; ANOVA, analysis of variance.)
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Furthermore, a mature glial limitans membrane is not
present, which would prevent transplanted cells from
migrating into the neural retina in adult intravitreal cel-
lular transplantation.79 In the future application of stem

cells or their progeny for the treatment of retinal pathology
in adults, the mature glial limitans must be bypassed: the
target for adult cellular replacement therapy is subretinal.
Barriers to adult subretinal transplantation include cellular

Fig. 6—Subretinal transplantation of GFP+ RSC progeny in the vehicle, a physical blend of hyaluronan (HA) and methylcellulose (MC)–HAMC–
assayed at 4 weeks’ post-transplantation. Transplantation in saline shows noncontiguous cellular integration and localized cellular aggregates

(inset) atop Bruch’s membrane (BM) (A), suggestive of aggregation before or after transplantation. Transplantation in HAMC shows contiguous
areas of RPE integration over large areas of retina (inset) (B), suggesting that HAMCmaintains cellular distribution during injection and prevents

aggregation before or after transplantation. Arrowheads indicate location of individual nuclei of transplanted cells (Hoechst nuclear stain, blue).
Confocal images of cuboidal RPE cells sitting atop Bruch’s membrane after injection in saline (C) or HAMC (D) (merged with contrast to show

cytoplasmic architecture). Note noncontiguous distribution in HAMC versus buffered saline vehicle. Integration along Bruch’s membrane
shows significantly greater coverage by GFP+ cells delivered in HAMC versus buffered saline over areas of observed integration (n 5 3 eyes

each) (E). Reprinted with permission.74 (GFP, green fluorescent protein; RSC, retinal stem cell; RPE, retinal pigmented epithelium.)
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survival and integration into host tissue. It has been well
documented that cell death, leakage, and migration from
the transplantation site occur when retinal progenitor cells
are delivered as a single-cell suspension in saline.80 To
overcome the survival and integration barriers in the adult,
interdisciplinary studies, such as the combination of regu-
lar tissue culture with tissue engineering, are being used.
To date, these have included delivery of retinal progenitor
cells, isolated during development, on solid biomaterial
scaffolds.81–84 While important advances have been made,
these solid scaffolds do notmatch themodulus of the retina
and lack the flexibility required for subretinal delivery.84

Recently, a minimally invasive, injectable, in situ, bio-
degradable cellular delivery matrix vehicle has been
developed for the transplantation of adult RSCs to the
subretinal space of adult mice.74 The vehicle allows for
normal RSC survival and proliferation in vitro and exhibits
benefits in overcoming barriers to cell integration in vivo
compared with saline controls (Fig. 6). Tissue analysis at
4 weeks after transplantation revealed that RSCs delivered
subretinally in saline resulted in noncontinuous inte-
gration into the RPE, whereas RSCs in the polymer vehicle
integrated with the RPE and formed continuous banding
atop Bruch’s membrane. Delivery in the polymer vehicle
greatly increased coverage of Bruch’s membrane over the
area of subretinal injection (Fig. 6E). This cell delivery
strategy may be useful for the treatment of widespread
and (or) advanced maculopathy, in which large areas of
RPE are destroyed.85 The choroidal neovascularization
that is a hallmark of wet AMD is marked by widespread
RPE disruption and disturbance of homeostatic mecha-
nisms of photoreceptor outer segment phagocytosis.86–88

CONCLUSIONS

The field of adult RSC research has much to offer those
interested in the science and treatment of retinal degenera-
tive diseases. The response of transplanted RSCs to various
forms of retinal injury or degeneration gives a method to
investigate the pathologic mechanisms at work in the dis-
easedmicroenvironment. From a clinical perspective, RSC
transplantation has shown that the actively degenerating or
dystrophic adult retina can be repopulated with donor-
derived retinal cell types. These new cells can survive and
exhibit morphological and functional integration with
host neurocircuitry. While much remains to be improved
in terms of integration efficiency and improved visual
acuity, the field presents an exciting new strategy for retinal
disease management and the hope that effective regenerat-
ive treatments are not far in the future.
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